$B = \frac{1}{2}$ Biosynthetic Pathway of Milbemycins

KOICHI NONAKA*, CHIEKO KUMASAKA, YOSHIHIRO OKAMOTO[†], Fumio Maruyama and Hiroji Yoshikawa

Biomedical Research Laboratories, Sankyo Co., Ltd.,
389-4, Aza-ohtsurugi, Shimokawa, Izumi-machi, Iwaki-shi, Fukushima 971-8183, Japan [†] Agroscience Research Laboratories, Sankyo Co., Ltd., T Agroscience Research Laboratories, Sankyo Co., Ltd., 1041 Voor, Voor also Voor and Chica 500.0242. Jane $1041,2412,$ Yasu-cho, Yasu-cho, Yasu-gun, Shiga 520-234, Japan

(Received for publication August 5, 1998)

Streptomyces hygroscopicus subsp. aureolacrimosus SANK 60286 and SANK 60576 produce many kinds of milbemycins. Among them, milbemycin α_{11} , α_{14} , A_3 , and A_4 have the most effective acaricidal activity. In this study, we investigated the terminal biosynthetic pathway to milbemycin α_{14} and A_4 which accumulated as the final products in these strains. Using cerulenin, a specific inhibitor of fatty acid and polyketide biosynthesis, we conducted bioconversion experiments with cultures of several mutants, including milbemycin A_4 and A_4 producing strains. The biconversions of military sin μ_6 to military since μ_6 biosynthesis of milbemycin A_4 from milbemycin β_6 in the milbemycin A_4 -high producing strain, there appeared to be two separate pathways exhibiting different sequences of furan ring formation and C-5 keto reduction steps. \mathcal{L}

Since the discovery in 1967 of B-41, a metabolite with
an outstanding activity against various kinds of mites, more than 30 kinds of structurally similar milbemycins have been isolated from a fermentation broth of the h_1 is defined from a fermentation broth of the h_1 Streptomyces hygroscopicus subsp. aureolacrimosu Researchers at Sankyo Co., Ltd. elucidated the structure
of milbemycins using X-ray crystallographic analysis of of milbemycins using X-ray crystallographic analysis of the p -bromophenyl-urethane derivative, mass spectrometry, and ¹H and ¹³C NMR spectroscopy²⁾. The structure was basically a 16-membered lactone with a spiroketal ring system consisting of two six-membered $\frac{1}{2}$ spiroketal ring system consistence of two six-members of two rings and cyclohexenediol or phenol. Following the discovery of milbemycins, numerous compounds with
the same 16-membered macrolide structure were isolated. t_{eff} 6-membered macrolide structure were isolated, were isolated, were isolated, were isolated, were isolated, were isolated, were in $\frac{1}{2}$ merck's avermeetin with potent anthelmint activity, Cyanamid's LL-F28249, Glaxo's Factor series compounds, and our new milbemycins α_{11} , α_{14} produced
by the newly isolated strain, SANK 60286. Based on many preliminary tests, a mixture of milbemycin A_3 and A_4 was selected as a candidate for an acaricide. After making great efforts to develop the production process, we began to market Milbemectin (a mixture of milbe- $\frac{1}{2}$, $\frac{1$ mycin A_3 and A_4) as an acaricide for the control of mites in 1990. Furthermore, in animal health fields,

 $\frac{1}{2}$ orientatives of $\frac{1}{2}$ and $\frac{1}{2}$ were founded $\frac{1}{2}$ to be highly effective as anthelmintics and were marketed in 1990.

In biosynthetic studies, it was reported that the macrolide ring of milbemycins was biosynthesized *via* macrolide ring of milbemycins was biosynthesized via a polyketide derived from the condensation of several units of acetate, propionate, and a branched chain fatty acid³⁾. For avermectins, the clustered genes encoding the acid3). For avermectins,. the clustered genes encoding the biosynthetic enzymes have been cloned and the biosynthetic order of avermectins after the formation of 16-membered macroeyclic lactones has been studied^{4 \sim 7).} However, further study of the biosynthetic pathway of milbemycins has been limited to an investigation of the milbemycins has been limited to an investigation of the pathway from milbemycin J and K to A3 and A4 using

an intact-cell and cell-free system of the strain Rf-1078). Cerulenin is a specific inhibitor of the condensation reaction in the biosynthesis of fatty acids and poly-
ketides with no effect on the growth of those producing ketides with no effect on the growth of those producing $\frac{1}{\sqrt{2}}$ microorganisms9). During a screening program for isolating a high-producing strain of milbemycins, we obtained several improved strains and blocked mutants. obtained several improved strains and blocked mutants. These strains enabled us to study the biosynthetic sequence of various milbemycins under conditions that allowed cerulenin to inhibit the formation of the

Table 1. Microorganisms and major products.

Fig. 1. Structure of 25-ethyl milbemycins.

macrolide ring. In this paper, we report a bioconversion
study conducted with cerulenin to deduce the terminal biosynthetic pathway of milbemycins including milbemy- \mathbf{b} pathway of milbemy cins including milbemy \mathbf{b} $\frac{4}{4}$ and $\frac{1}{4}$.

Materials and Methods

Microorganisms
During a screening program of high producing milbemycin strain, some blocked mutants were isolated by means of mutagen treatment and mono spore isolation (Table 1). Each strain was maintained on $1/2YM$ slant agar (sucrose 0.4%, skim milk 0.1%, yeast extract 0.2%, \overline{a} $\frac{1}{2}$ 50% (W/V) glycerol solution at -20° C.

Preparation of Milbemycin-related Compounds
The structure of the compounds used for bioconversion The structure of the compounds mean of structures the compounds $\frac{1}{2}$ is shown in Fig. 1. All the compounds except 20 -Of milbemycin A4, the so-called milbemycin α_{27} , have already been isolated and reported¹. Milbemycin α_{27} was isolated and purified by silica gel chromatography and preparative HPLC. This structure was determined in comparison with other milbemycin structures after in comparison with other innocmpen structures after some analyses (data not shown).

Fermentation and Bioconversion

Spore suspension was inoculated into PS medium (sucrose 1.0%, Polypepton 0.35%, K_2HPO_4 0.05%, pH 7.2) and cultured for 3 days at 28°C on a rotary shaker. 7.2) and cultured for 3 days at 28°C on a rotary shaker. Next, 1 ml of seed culture was transferred into a 100ml

 $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ containing 1 $\begin{bmatrix} 0 & 1 \end{bmatrix}$ music medium mediu designated as $Y-1-3$ (sucrose 12% , Pharmamed 1.1%, soybean meal 1.1%, skim milk 1.1%, K_2HPO_4 0.1%, FeSO₄·7H₂O 0.01%, CaCO₃ 0.25%, pH 7.2). The cultivation was continued for the desired period on a rotary shaker at 28° C. For the bioconversion experiment, cerulenin (final conc. $25 \mu g/ml$) was added to the culture cerulenin (final cone. 25 july metal cone. 25 july was added to the culture α at the beginning and every 24 hours to prevent the formation ofaglycon. After 72 hours of cultivation, each milbemycin-related compound was added (final cone. 80 jUg/ml) and the culture was incubated for a further 24 hours. Under these conditions, the bioconversion experiments were carried out with a blocked mutant major product by the tested mutant. major product by the tested mutant.

Detection of Milbemycin-related Compounds by HPLC

To analyze converted product in the culture broth, 0.5 ml of the broth was mixed with 4.5 ml of MeOH and ml of the broth was mixed with 4.5 ml of MeOHand sonicated for 20 minutes. Ten /A of the filtered solution

Fig. 2. Time course of milbemycin $\alpha_{11} + \alpha_{14}$ production.

 \triangle PCV of cerulenin-added culture, \triangle PCV of control culture, \diamond productivity of cerulenin-added ϵ culture, \blacktriangle productivity of control culture culture, extending of control culture. We can control culture \mathcal{C}

Fig. 3. Bioconversion of milbemycin-related compounds by strain RDGr.

 $\Delta:$ control (with certain certain), B: bioconversion of milbemycin \bm{V} B , bioconversion of milbemycin B_4 , E: bioconversion of milbemy cin K.

HPLC traces 1, 2, and 3 recorded before, 0 hour after, and 24 hours after the addition of milbemycinrelated compounds, respectively.

was then injected into the column: HPLC analysis was performed on a NOVA-PAK®C18 (3.9 mm i.d. \times 150 mm, Waters) or ^a ^J'-sphere ODS-L80 (4.6mm $\frac{1}{4}$ $\frac{1}{4}$ with a mixture of MeCN-MeOH-H₂O (8.8.5) or 66.5% MeCNat a flow rate of 1.5ml per minute. Detection was done by UV absorbance at 242 nm.

Results

Effect of Cerulenin on Milbemycin Production

Milbemycin production of strain RM28D-688, milbe-
mycin α_{11}/α_{14} -producing strain, was not affected when cerulenin was added at the beginning of cultivation, but cerulenin was added at the beginning of cultivation, but the beginning of cultivation, but the beginning of cu it was inhibited strongly when cerulenin was added to the culture broth every 24 hours. Figure 2 shows the time
course of milbemycin α_{11} and α_{14} production with or without cerulenin. In the cultivation with addition of $25 \mu g/ml$ of cerulenin every 24 hours for 11days, small amounts of milbemycin α_{11} and α_{14} were detected by amounts of milberrycin a₁₁ and α_{14} were detected by $HPLC$ analysis from day β , and its production was inhibited to 40% of the control culture. In case over $25 \mu g/ml$ of cerulenin was added to the culture broth, the growth of tested strain was unstable and no bioconversions were occurred. We also confirmed that the successive addition of $25 \mu g/ml$ of cerulenin inhibited $\begin{array}{ccc} \mathbf{S} & \mathbf{S} & \mathbf{S} \\ \mathbf{S} & \mathbf{S} & \mathbf{S} & \mathbf{S} \\ \mathbf{S} & \mathbf{S} & \mathbf{S} & \mathbf{S} \end{array}$ milbemycins production of other strains used for the following bioconversion tests (data not shown). Therefore, we set up the experimental conditions for biofor the experience of the experience of the experience of the experience of μ conversion as indicated in Materials and Methods. $\frac{1}{100}$ with the control culture (with comparison without ing with the control culture (with cerulenin, without milbemycins) as shown in Fig. 3.

Bioconversion of 25-Ethyl Milbemycin-related Compounds by Strain RDGr

 $\frac{1}{2}$ $\frac{1}{2}$ and $\frac{1}{2}$ $\frac{1}{2}$ and $\frac{1}{2}$ as major products. Millbelliyem p_6 added into the cerulenin-supplemented culture of strain RDGr was
converted to milbemycin A_4 . Milbemycin K, β_5 , and β_4 were also converted to milbemycin A_4 under the same $\frac{1}{4}$ under the same conditions, but imposity α_{27} was not converted to milbemycin α_{14} (Fig. 3. and Table 2).

Bioconversion of 25-Ethyl Milbemycin-related Compounds by Strain MK-1391

Strain MK-1391 derived from milbemycin A_4 producing strain produced milbemycin β_5 , β_6 , β_7 , and β_{12} as major products. Milbemycin β_6 and K were $\frac{1}{2}$ as $\frac{1}{2}$ as milbemycin θ and θ were study converted to milbemycin p_5 and A_4 , respectively.

Table 2. Bioconversion of milbemycin-related compounds.

Strain	Substrate	Product
RDGr	β_4	A_4
	β_5	A_4
	β_6	A_4
	K	A_4
	α_{27}	Not converted
Rf-107	K	Not converted
	β_4	β_2
	β_{5}	β_2
	β_6	K
	${\rm A}_4$	B_3
MK-1391	β_4	β_2 , unknown product
	β_5	Not converted
	β_6	β_{5}
	K	A_4
RM28D-688	β_4	β_2
	β_5	β_2
	β_6	β_2
	α_{27}	α_{14}
M28D-10/82	β_4	β_2
	β_{5}	β_4, β_2
	K	A_4
	A_4	B_3
	α_{27}	α_{14}
57-338	$\rm A_{4}$	α_{27} , B_3
BC-5-55	β_4	β_2
	β_{5}	Not converted
	K	A_4, α_{27}
	A_4	α_{27}, α_{14}
	α_{27}	α_{24}

Milbemycin β_4 was converted to milbemycin β_2 and unknown products under the same conditions, but milbemycin β_5 was not converted (Table 2).

$B = 25$ μ ₁, $B = 25$ Compounds by Strain Rf-107

Strain Rf-107 derived from milbemycin A_4 -producing strain produced milbemycin J, K, and β_6 as major products. Milbemycin β_6 was converted to milbemycin **K**. Milbemycin β_5 and β_4 were both converted to m ilbemycin θ Millen is θ milbemycin β_2 . Milbemycin A_4 was converted to milbemycin B_3 under the same conditions, but $\sum_{i=1}^{n}$

Bioconversion of 25-Ethyl Milbemycin-related Compounds by Strain RM28D-688

Strain RM28D-688 produced four milbemycin-related

Fig. 4. Bioconversion of milbemycin-related compounds.

A: Bioconversion of milbemycin β_6 by strain Rf-107, B: bioconversion of milbemycin β_2 by strain RM28D-688, C: bioconversion of milbemycin A₄ by strain 57-338, D: bioconversion of milbemycin α_{27} by strain RM28D-688.

 $H = 2$ ratio -2 , and 3 recorded before, 0 hours \mathbf{r} relations, respectively. HPLC traces 1, 2, and 3 recorded before, 0 hour after, and 24 hours after the addition of milbemycin-

compounds, β_1 , β_2 , α_{11} , and α_{14} , as major products. Milbemycin β_6 was converted to milbemycin β_2 . θ and θ is an order both converted to milked the second to milked the second to milked the second to milked the second to mil β_2 under the same conditions. Milbemycin α_{27} was converted to milbemycin a14 as a final product in the biosynthetic pathway of 25-ethyl milbemycins (Fig. 4. and Table 2).

Byconversion of 25-Ethyl Milbemycin-related Compounds by Strain $M28D-10/8$

Strain M28D-10/82 derived from milbemycin α_{14} producing strain produced four milbemycin-related compounds, β_1 , β_2 , B_2 , and B_3 , as major products. $M_{\rm eff}$ miliber $M_{\rm eff}$ and a27 were converted to α miliber converted to α A_4 , B_3 , and α_{14} , respectively. Millbelliyeth p_5 was converted to milbemycin β_2 via β_4 under the same conditions (Table 2).

Bioconversion of Milbemycin A_4 by Strain 57-338

Strain 57-338 derived from milbemycin α_{14} -producing strain produced milbemycin B₂, B₃, and α_{27} as major products. Milbemycin A_4 was converted to milbemycin α_{27} and B_3 by strain 57-338 (Fig. 4. and Table 2).

Bioconversion of C-25 Ethyl Milbemycin-related \sum Compounds by Strain BC-5-5

a27 and B3 by strain 57-338 (Fig. 4. and Table 2).

Strain BC-5-55 derived from milbemycin α_{14} producing strain produced milbemycin β_6 and β_7 as maior products. The bioconversion of milbemycin K to major products. The bioconversion of milbemycin K to α_{27} via A₄, milbemycin A₄ to α_{14} via α_{27} , milbemycin α_{27} to α_{14} , and milbemycin β_4 to β_2 were respectively $\frac{2}{3}$ to $\frac{2}{3}$, and milbems in θ , respectively consisted (Tele confirmed, but military \mathcal{L} was not converted (Table 2).

Fig. 5. Conversion of milbemycin β_6 in MeOH extract.

HPLC traces A, B, C, and D recorded 0 hour, 1 week, 2 weeks, and 3 weeks after the extraction of m ibemyein-related compounds from culture broth milbemycin-related compounds from culture broth.

Conversion of Milbemycin β_6 in MeOH

 $M = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ cin A_4 *via* p_5 and p_4 , or *via* milbemycin **K** by milbemycin-producing strain. When MeOH extract containing milbemycin β_6 was kept at room temperature, $\frac{1}{\sqrt{6}}$ was kept at room temperature, $\frac{1}{\sqrt{6}}$ milbemycin p_6 was converted to a new compound, 25-ethyl milbemycin β_3 (Fig. 5).

Cerulenin is a powerful inhibitor useful in analyzing the biosynthetic sequence after the formation of poly- \mathbf{r} ketide or macrolide compounds. To elucidate the biosynthetic pathway of milbemycin α_{14} from milbemy-
cin β_6 and the mutated steps in several blocked mutants, we examined bioconversions with cerulenin added to the culture broth. The results of bioconversion by using culture broth. The results of bioconversion by using $s_{\rm max}$ and $s_{\rm max}$ and $s_{\rm max}$ and $s_{\rm max}$ that there are two

routes for furan ring formation leading to milbemycin A_4 , one is milbemycin $\beta_6 \rightarrow \beta_5 \rightarrow \beta_4 \rightarrow A_4$ and the other A_2 and is miles in μ_0 and μ_1 , μ_2 , μ_4 and the other the other \sim μ ⁶ (\sim) \sim \sim \sim \sim μ \sim \sim μ \sim \sim μ \sim \sim \sim μ \sim \sim μ formation (milbemycin $\beta_6 \rightarrow (X) \rightarrow K$) was working but
the other (milbemycin $\beta_4 \rightarrow A_4$) was not. We think there $\frac{1}{1}$ would be two enzymes, which had different substrate specificities, and an intermediate X, C-8a hydroxyl milbemycin β_6 , which has not yet been isolated in the culture broth, existed in the pathway of milbemycin β_6 to K. This compound might be unstable and quickly converted to milbemycin K in the culture broth of our milbemycin producer. Although the producing organism is different from ours, the corresponding compound to intermediate X , VM44868, has been already isolated and reported by SmithKline Beecham group¹⁰⁾. VM44868 would be bioconverted to α -type milbemycin, VM44857, in the culture broth by the similar reaction, equivalent to the steps V and VI in Fig. 6 . On the other hand, milbemycin β_6 is non-enzymatically converted to 25-ethyl milbem is non-enzymatically converted to 25-ethyles is non-enzymatically converted to 25-ethyles in 25-ethyles
The 25-ethyles is non-enzymatically converted to 25-ethyles in 25-ethyles in 25-ethyles in 25-ethyles in 25-et milbemycin p_3 in MeOH as shown in Fig. 5. The corresponding compound to 25-ethyl milbemycin β_3 , VM54339, would be also non-enzymatically converted from VM44868 in MeOH. According to the report by H. IKEDA and S. \overline{O} MURA¹¹, it has shown that the oxygen in the benzofuran between C-6 and C-8a is derived from molecular oxygen, and this oxdation would be performed molecular oxygen, and this oxdation would be performed by cytochrome P450 type oxidase. By isolating BC-5 we determined that the first formed of the 25-ethy milbemycins was milbemycin β_6 . In addition, the results of bioconversion by using strain BC-5-55, suggest that there would be two enzymes for $C-5$ keto reduction in the two routes from milbemycin β_6 to A₄. In strain $\frac{1}{2}$ BC-5-55, one of deduced C-5 keto reductase (milbemycin $K \rightarrow A_4$) was working but the other $(\beta_6 \rightarrow \beta_5)$ was not. From these bioconversion tests, the plausible biosynthetic pathway from milbemycin β_6 , the first formed product, *via* a hypothetical polyketide derived from 7 acetate and 6 propionate units, is summarized in Fig. 6. acetate and 6 propionate units, is summarized in Fig. 6. T_{tot} steps in the tested steps indicated steps in the tested steps indicated strains are also indicated steps in

in the Figure.
These two biosynthetic pathways exclusively demon-These two biosynthetic pathways exclusively demonstrated the contract of the c strated by the milbemycin A4-high-producing strain, RDGr, have not been reported for avermectin-producing
strains. According to some reports^{$4 \sim 6$}, avermectin- $\frac{1}{\sqrt{2}}$ strains. According to some report reports $\frac{1}{\sqrt{2}}$, and $\frac{1}{\sqrt{2}}$ producing strains only have the biosynthetic pathway equivalent to milbemycin $\beta_6 \rightarrow K \rightarrow A_4$. In the strain
improvement program, a lot of the strains isolated and $\frac{1}{\sqrt{2}}$ is $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$ the strains is convenients in $\frac{1}{\sqrt{2}}$ cultivated had a tendency to accumulate milbemycin β_6 . For strain RDGr, two biosynthetic pathways from

Fig. 6. Proposed pathways of milbemycin α_{14} biosynthesis.

milbemycin β_6 to A₄ might be necessary for high pro-
duction of milbemycin A₄. Furthermore, the comparison $\frac{d}{dx}$. Furthermore, the comparison of bioconversion tests between milbemycin A_4 - and α_{14} -producing strains indicated that the milbemycin A4-producing strain had no enzyme for steps VII and VIII in Fig. 6.

Acknowledgments

We would like to thank Dr. A. Hong and Dr. T. Hsieh at Panlabs Inc. for kindly providing strain 57-338.

References

- I) IDE, J.; T. OKAZAKI, M. ONO, A. SAITO, K. NAKAGAWA, S. NAITO, K. SAITO, K. TANAKA, H. YOSHIKAWA, M. ANDO, S. KATSUMI, K. MATSUMOTO, T. TOYAMA, M. Ando, S. Katsumi, K. Matsumoto, T. Toyama, M. SHIBANO & M. ABE: Milbemycin: Discovery and Development. Annu. Rep. Sankyo Res. Lab. 45: $1 \sim 98$,
- 1993
Mishima, H.; M. Kurabayashi, C. Tamura, S. Sato, H. (2) KUWANO & A. SAITO: Symposium Paper of the 18th KUWANO & A. SAHO. Symposium Paper of the 18th $\frac{1}{200}$ 1074 309, 1974
- ONO, M.; H. MISHIMA, Y. TAKIGUCHI, M. TERAO, H. KOBAYASHI, S. IWASAKI & S. OKUDA: Milbemycins, a new $3)$ family of macrolide antibiotics: Studies on the biosynthesis of milbemycins β_2 , β_4 and D using ¹³C-labeled precursors. J. Antibiotics 36: $991 \sim 1000$, 1983
- 4) IKEDA, H. & S. \overline{O} MURA: Genetic aspects of the selective I_{H} and I_{H} are selective. I_{H} of the selective aspects of the selective production of useful components in the avermectin producer Streptomyces avermitilis. Actinomycetol. 7: 133-144, 1993
- 5) PANG, C. H.; K. MATSUZAKI, H. IKEDA, H. TANAKA & S. OMURA: Production of 6,8a-Seco-6,8a-deoxy derivatives of avermectins by a mutant strain of Streptomyces avermitilis. J. Antibiotics 48: $59 \sim 66$, 1995
- 6) IKEDA, H. & S. \overline{O} MURA: Control of avermectin biosynthesis in Streptomyces avermitilis for the selective production of a useful component. J. Antibiotics 48: $549 \sim 562, 1995$
- MacNeil, D. J.; J. L. Occi, K. M. Gewain, T. MacNeil, P. H. Gibbons, C. L. Ruby & S. J. Danis: Complex organization of the Streptomyces avermitilis genes encoding the avermectin polyketide synthase. Gene 115: $119 - 125$, 1992
- Ono, M.; H. Mishima, Y. Takiguchi & M. Terao: $8)$ Milbemycins, a new family of macrolide antibiotics fermentation: fermentation, isolation, physico-chemical properties and bioconversion of milbemycins J and K. J. properties and bioconversion of milbemysine ϵ and $\lambda \nu \epsilon$.
Antibiotics 36: 509 \sim 515, 1983
- 9) ŌMURA, S.; C. KITAO, H. HAMADA & H. IKEDA:
Bioconversion and biosynthesis of 16-membered macro-Byconversion and biosynthesis of 16-membered macrolide antibiotics. Λ . Final steps in the biosynthesis of spiramycin, using enzyme inhibitor: Cerulenin. J.
Antibiotics 27: $176 \sim 182$, 1979
- 10) BAKER, G. H.; S. E. BLANCHFLOWER, R. J. J. DORGAN, J. $\frac{1}{2}$ Baker, G. H.; S. E. Blanch flower, R. J. J. Doromy, R. Everett, B. R. Manger, C. R. Reading, S. A.

READSHAW & P. SHELLEY: Further novel milbemycin antibiotics from *Streptomyces* sp. E225: Fermentation, antibiotics from Streptomyces sp. E225: Fermentation, isolation and structure elucidation. J. Antibiotics 49: $272 \sim 280, 1996$

Rev. 97: $2591 \approx 2609$, 1997